The use of kurtosis de-noising for EEG analysis of patients suffering from Alzheimer's disease.
نویسندگان
چکیده
The use of electroencephalograms (EEGs) to diagnose and analyses Alzheimer's disease (AD) has received much attention in recent years. The sample entropy (SE) has been widely applied to the diagnosis of AD. In our study, nine EEGs from 21 scalp electrodes in 3 AD patients and 9 EEGs from 3 age-matched controls are recorded. The calculations show that the kurtoses of the AD patients' EEG are positive and much higher than that of the controls. This finding encourages us to introduce a kurtosis-based de-noising method. The 21-electrode EEG is first decomposed using independent component analysis (ICA), and second sort them using their kurtoses in ascending order. Finally, the subspace of EEG signal using back projection of only the last five components is reconstructed. SE will be calculated after the above de-noising preprocess. The classifications show that this method can significantly improve the accuracy of SE-based diagnosis. The kurtosis analysis of EEG may contribute to increasing the understanding of brain dysfunction in AD in a statistical way.
منابع مشابه
تاثیر هورمون های استروژن و پروژسترون بر وضعیت نوار مغزی و MMSE در بیماران زن مبتلا به آلزایمر
Background and Aim: Alzheimer's disease is the most common cause of dementia, leading to debilitating the patient and indirectly causing a lot of economical and psychological problems both for the rest of the family and for the society. Because of the high incidence of the disease and no definite treatment for it, a lot of studies are being carried out to find effective therapies. Recent studie...
متن کاملAssessing the Effects of Alzheimer’s disease on EEG Signals Using the Entropy Measure: a Meta-Analysis
Introduction and Aims: Alzheimer’s disease is the most prevalent neurodegenerative disorder and a type of dementia. 80% of dementia in older adults is because of Alzheimer’s disease. According to multiple research articles, Alzheimer's has several changes in EEG signals such as slowing of rhythms, reduction in complexity and reduction in functional associations, and disordered functional commun...
متن کاملTowards Semi-Automatic Artifact Rejection for the Improvement of Alzheimer’s Disease Screening from EEG Signals
A large number of studies have analyzed measurable changes that Alzheimer's disease causes on electroencephalography (EEG). Despite being easily reproducible, those markers have limited sensitivity, which reduces the interest of EEG as a screening tool for this pathology. This is for a large part due to the poor signal-to-noise ratio of EEG signals: EEG recordings are indeed usually corrupted b...
متن کاملDe-Noising SPECT Images from a Typical Collimator Using Wavelet Transform
Introduction: SPECT is a diagnostic imaging technique the main disadvantage of which is the existence of Poisson noise. So far, different methods have been used by scientists to improve SPECT images. The Wavelet Transform is a new method for de-noising which is widely used for noise reduction and quality enhancement of images. The purpose of this paper is evaluation of noise reduction in SPECT ...
متن کاملImprovement of Support Vector Machine and Random Forest Algorithm in Predicting Khorramabad River Flow Uusing Non-uniform De-Noising of data and Simplex Algorithm
In this study, in order to simulate the monthly flow of the Khorramabad River, the time series of this river was decomposed into three levels using the wavelet of Daubechies-3, during the period of 1955-2014. Based on this, it was found that there is a Non-uniform noise that includes two periods of time in this signal, with the October 2008 border which required that the signal be become non-un...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bio-medical materials and engineering
دوره 26 Suppl 1 شماره
صفحات -
تاریخ انتشار 2015